Physical activity classification in middle-aged recreational marathoners using triaxial accelerometer

Carlos Hernando^{1.2}. PhD; Bárbara Hernando³. PhD; Carla Hernando⁴. MSc; Eladio J Collado⁵. PhD; Nayara Panizo⁵. PhD; Ignacio Martinez-Navarro^{6.7}. PhD.

¹ Sport Service. Jaume I University; ² Department of Education. Jaume I University; ³ Department of Medicine. Jaume I University; ⁴ Department of Mathematics. Carlos III University of Madrid; ⁵ Faculty of Health Sciences. Jaume I University; ⁶ Department of Physical Education and Sport. University of Valencia; ⁷ Sports Health Unit. Vithas-Nisa 9 de Octubre Hospital

4th International Congress of Trail running. 5th Annual Congress on Medicine & Science in Ultraendurance Sports

May 9th-10th 2018 Castellón (Spain)

The use of accelerometers in physical activity evaluation

Strengths

- Concurrent measure of movement
- Provides detailed intensity, frequency and duration data
- Can store data for weeks at a time
- Low burden and easy to wear
- Relatively inexpensive
- Does not depend on other connections or devices
- Does not disturb the daily live

- Can not account for all activities, such as stair use, lifting a load
- Body location decision is vital (i.e. upper-body activities neglected with hip or lower-back wear)
- Calibration needs to be performed according to study characteristics (specific cut points)
- Data reduction, transformation and processing take time

Validation of the GENEA Accelerometer

DALE W. ESLIGER 1,2 , ANN V. ROWLANDS 1 , TINA L. HURST 3 , MICHAEL CATT 3,4 , PETER MURRAY 3 , and ROGER G. ESTON 1

¹School of Sport and Health Sciences, St Luke's Campus, University of Exeter, Exeter, England, UNITED KINGDOM;
²College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, CANADA;
³Unilever Discover, Colworth, West Sussex, England, UNITED KINGDOM; and ⁴Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UNITED KINGDOM

MEDICINE & SCIENCE IN SPORTS & EXERCISE_®
Copyright © 2011 by the American College of Sports Medicine

DOI: 10.1249/MSS.0b013e31820513be

$$SVM_{gs} = \sum |\sqrt{x^2 + y^2 + z^2} - g|$$

TABLE 4. Sensitivity, specificity, area under the ROC curve, and GENEA SVM_{gs} (g min) cut points that maximized sensitivity and specificity at three wear positions.

Intensity ^a	Sensitivity	Specificity	Area Under ROC Curve (95% CI)	GENEA Cut Points SVM _{gs} (g·min)
Left wrist				
Sedentary	97	95	0.98 (0.98-0.99)	<217
Light	NA	NA	NA	217-644
Moderate	95	72	0.91 (0.88-0.93)	645-1810
Vigorous	78	98	0.91 (0.86-0.95)	>1810
Right wrist				
Sedentary	99	96	0.98 (0.97-0.99)	<386
Light	NA	NA	NA .	386-439
Moderate	100	56	0.84 (0.81-0.87)	440-2098
Vigorous	78	97	0.89 (0.84-0.94)	>2098
Waist				
Sedentary	99	96	0.97 (0.96-0.98)	<77
Light	NA	NA	`NA	77-219
Moderate	96	80	0.93 (0.91-0.95)	220-2056
Vigorous	73	99	0.92 (0.88-0.96)	>2056

[&]quot;Sedentary (<1.5 METs), light (1.5-3.99 METs), moderate (4.00-6.99 METs), and vigorous (7+ METs).</p>

NA, not applicable as the sedentary and moderate cut points provide the boundaries for the light-intensity category.

Objective

 To establish GENEA cut-points for discriminating between six relative-intensity activity levels in middleaged recreational marathoners

- Runners characteristics for inclusion:
 - Age: from 30 to 45 years old
 - Health: Free from cardiac or renal disease and from consuming drugs.
 - Marathon PB:
 - Males: within 3 to 4 hours
 - Females: within 3h30min to 4h30min
 - Body Mass Index: from 16 to 24.99 kg·m²

• Ethics Statements:

- All individuals included in the current study were fully informed and gave their written consent to participate.
- The research was conducted according to the Declaration of Helsinki. and it was approved by the Research Ethics Committee of the Jaume I University of Castellon.

- Each participant completed a standardized questionnaire to collect demographic information, as well as medical information, training plan and competition history.
- Each participant complete a cardiopulmonary exercise test
 - The test was done on a treadmill (pulsar® 3p. h/p/cosmos sports & medical gmbh. Nussdorf-Traunstein. Germany) until exhaustion
 - Breath-by-breath gas exchange was measured by the Jaeger MasterScreen® CPX gas analyzer
 - The test was an adaptation of the incremental ramp exercise protocol (Myers J. Bellin D. 2000; Boone J. Bourgois J. 2012)

GENEActiv accelerometer (Activinsights Ltd.. Kimbolton. Cambridgeshire. United Kingdom).

- The acelerometer was worn during all time of the cardiopulmonary exercise test
- Non dominant wrist as a watch
- Frequency: 85.70 Hz
- Epoch: average each minute (SVMgs·min⁻¹)

Cut points of Physical Activity:

Relative intensity categories of physical activity according to individualized VO_{2max}

(modification from Strath et al.: 2013):

• Sedentary: $\dot{V}O_2 < 10\% \dot{V}O_{2max}$

Light: 10% ≤ VO₂ ≤ 25% VO_{2max}
 Moderate: 25% ≤ VO₂ ≤ 45% VO_{2max}

• Vigorous: $45\% \le \dot{V}O_2 \le 65\% \dot{V}O_{2max}$

• Very Vigorous: $65\% \le \dot{V}O_2 \le 85\% \dot{V}O_{2max}$

• Extremely Vigorous: $\dot{VO}_2 \ge 85\% \dot{VO}_{2max}$

• Statistics:

- Receiver Operation Curve (Curve ROC)
 - Youden Index
 - Area Under Curve (AUC). Sensibility & Specificity

Results

	Variable	All participants (N = 98)	Males (N = 83)	Females (N = 15)
	Age	38.72 ± 3.63	38.76 ± 3.65	38.50 ± 3.63
Physiological	ВМІ	22.87 ± 1.71	23.18 ± 1.48	21.32 ± 2.01
characteristics*	% Fat	14.74 ± 3.25	13.81 ± 3.67	19.54 ± 4.16
	VO _{2max} (ml·kg ⁻¹ ·min ⁻¹)	54.53 ± 5.63	55.74 ± 5.14	48.27 ± 3.60
Training indicators*	Sessions per week	4.81 ± 0.86	4.90 ± 0.85	4.33 ± 0.81
	Kilometers per week	63.16 ± 13.42	64.45 ± 13.21	55.66 ± 12.79
	Hours per week	7.30 ± 2.67	7.46 ± 2.69	6.21 ± 2.27
History as marathoner *	Marathons finished	3.28 ± 3.00	3.56 ± 3.09	1.92 ± 2.08
	Marathon per year	1.09 ± 0.61	1.21 ± 0.61	0.93 ± 0.59
	Marathon PB	3:34:47 ± 20:50	3:31:03 ± 19:10	3:54:30 ± 18:27
	High intensity	7.07%	8.43%	0%
Work intensity #	Medium intensity	31.31%	31.32%	31.25%
	Low intensity	61.61%	60.24%	68.75%
Levels of study #	School graduate	5.10%	4.87%	6.25%
	High school graduate	6.12%	6.09%	6.25%
	Professional certificate	16.32%	18.29%	6.25%
	Undergraduate degree	72.4%	70.73%	81.25%

Abbreviations: N, number of samples; BMI, body mass index; SD, standard deviation

[#] Values are presented as percentage of all individuals, males and females

^{*} Values are presented as mean ± SD

Results

Relative-intensity categories of physical activity according to individualized VO_{2max} measured in 98 adult marathon runners

	All samples (N = 98)		Males (N = 83)		Females (N = 15)	
Relative-intensity levels of physical activity #	ĊO₂(ml·kg⁻¹·min⁻¹)	METs *	^V O₂(ml·kg ⁻¹ ·min ⁻¹)	METs *	VO₂(ml·kg ⁻¹ ·min ⁻¹)	METs *
Sedentary X < 10%	ĊO₂ < 5.45	METs < 1.56	Vo₂ < 5.57	METs < 1.59	Vo₂< 4.82	METs < 1.38
Ligth 10% ≤ X <25%	5.45 ≤ Vo₂<13.63	1.56 ≤ METs < 3.90	5.57 ≤ VO ₂ < 13.94	1.59 ≤ METs <3.97	4.82 ≤ VO ₂ < 12.07	1.38 ≤ METs < 3.45
Moderate 25% ≤ X < 45%	13.63 ≤ Vo₂< 24.54	3.9 ≤ METs < 7.01	13.94≤ Vo₂<25.08	3.97 ≤ METs < 7.15	12.07 ≤ Vo₂< 21.72	3.45 ≤ METs < 6.21
Vigorous 45% ≤ X < 65%	24.54 ≤ Vo₂ < 35.44	7.01 ≤ METs < 10.13	25.08≤ Vo₂<36.23	7.15 ≤ METs < 10.33	21.72 ≤ Vo₂< 31.38	6.21 ≤ METs < 8.97
Very Vigorous 65% ≤ X < 85%	35.44 ≤ Vo ₂ < 46.35	10.13 ≤ METs < 13.24	36.23≤ Vo₂<47.38	10.33 ≤ METs <13.50	$31.38 \le \dot{V}O_2 < 41.03$	8.97 ≤ METs < 11.72
Extremely Vigorous X ≥ 85%	Vo₂≥ 46.35	METs ≥ 13.24	Vo₂≥ 47.38	METs ≥ 13.50	Vo₂≥ 41.03	METs ≥ 11.72

Abbreviations: N, number of individuals; $\dot{V}O_{2max}$, maximum oxygen consumption; MET, metabolic equivalent task

Each minute of the cardiopulmonary test was classified into one of the six intensity categories of physical activity relative to an individual's level of cardiorespiratory ($\dot{V}O_{2max}$).

* 1 MET = 3.5 ml·kg⁻¹·min⁻¹

[#] X denotes the percentage of a person's aerobic capacity (VO_{2max}) used to classify each one of the six relative-intensity categories

Results

Performance analysis of wrist-worn GENEA cut-points for each intensity level in adult marathon runners

Intensity level of physical activity	Sensitivity (%)	Specificity (%)	Area under the ROC curve (95% CI)	GENEA cut-points in SVM _{gs} (g·min) *
All samples (N = 98)				
Sedentary	99.2	93.6	0.973 (0.966-0.980)	SVM _{gs} < 528.31
Light	93.6	99.2	0.973 (0.966-0.980)	$528.31 \le \text{SVM}_{gs} < 1166.28$
Moderate	97.2	93.5	0.993 0.990-0.996)	$1166.28 \le \text{SVM}_{gs} < 3679.91$
Vigorous	96.5	93.9	0.988 (0.984-0.993)	$3679.91 \le \text{SVM}_{gs} < 4155.94$
Very Vigorous	95.1	78.0	0.943 (0.933-0.954)	$4155.94 \le \text{SVM}_{gs} < 5250.68$
Extremely Vigorous	88.9	71.0	0.886)0.867-0.905)	SVM _{gs} ≥ 5250.68
Males (N = 83)				
Sedentary	99.1	94.0	0.973 (0.966-0.981)	$SVM_{gs} < 528.31$
Light	94.0	99.1	0.973 (0.966-0.981)	$528.31 \le \text{SVM}_{gs} < 1166.28$
Moderate	97.0	93.2	0.992 0.989-0.996)	$1166.28 \le \text{SVM}_{gs} < 3679.91$
Vigorous	97.6	93.8	0.99 (0.985-0.995)	$3679.91 \le SVM_{gs} < 4364.64$
Very Vigorous	91.7	80.9	0.94 (0.929-0.952)	$4364.64 \le \text{SVM}_{gs} < 5264.37$
Extremely Vigorous	89.9	70.3	0.881 0.859-0.903)	SVM _{gs} ≥ 5264.37
Females (N = 15)				
Sedentary	100	93.0	0.968 (0.946-0.990)	$SVM_{gs} < 326.08$
Light	93.0	100	0.968 (0.946-0.990)	$326.08 \le \text{SVM}_{gs} < 1264.59$
Moderate	98.3	97.8	0.995 0.989-1.000)	1264.59 ≤ SVM _{gs} < 2717.5
Vigorous	97.8	93.8	0.988 (0.977-0.999)	2717.5 ≤ SVM _{gs} < 3355.56
Very Vigorous	98.3	86.5	0.97 (0.951-0.989)	$3355.56 \le \text{SVM}_{gs} < 5796.21$
Extremely Vigorous	86.1	82.5	0.924 0.883-0.965)	SVM _{gs} ≥ 5796.21
Abbreviations: N number of samples	· ROC receiver or	peration curve: C	L coefficient interval: SVM _ signal ma	gnitude vector gravity-subtracted

Abbreviations: N. number of samples; ROC. receiver operation curve; CI. coefficient interval; SVM_{gs}. signal magnitude vector gravity-subtracted * Optimal cut-points maximising Youden Index

Conclusions

 The wrist-worn GENEA accelerometer presents a high capacity of classifying the intensity of physical activity in middle-aged recreational marathoners when examining all samples together, as well as when sample set was separated by sex

 This study suggests that the triaxial GENEA accelerometers (worn on the non-dominant wrist) can be used to predict energy expenditure for running activities

Financial support

