Physical activity classification in middle-aged recreational marathoners using triaxial accelerometer

Carlos Hernando ${ }^{1.2}$. PhD; Bárbara Hernando ${ }^{3}$. PhD; Carla Hernando ${ }^{4}$. MSc; Eladio J Collado ${ }^{5}$. PhD; Nayara Panizo ${ }^{5}$. PhD; Ignacio Martinez-Navarro ${ }^{6.7}$. PhD.
${ }^{1}$ Sport Service. Jaume I University; ${ }^{2}$ Department of Education. Jaume I University; ${ }^{3}$ Department of Medicine. Jaume I University; ${ }^{4}$ Department of Mathematics. Carlos III University of Madrid; ${ }^{5}$ Faculty of Health Sciences. Jaume I University; ${ }^{6}$ Department of Physical Education and Sport. University of Valencia; ${ }^{7}$ Sports Health Unit. Vithas-Nisa 9 de Octubre Hospital

4th International Congress of Trail running. 5th Annual Congress on Medicine \& Science in Ultraendurance Sports

May 9th-10th 2018
Castellón (Spain)

The use of accelerometers in physical activity

evaluation

- Concurrent measure of movement
- Provides detailed intensity, frequency and duration data
- Can store data for weeks at a time
- Low burden and easy to wear
- Relatively inexpensive
- Does not depend on other connections or devices
- Does not disturb the daily live

Weaknesses

- Can not account for all activities, such as stair use, lifting a load
- Body location decision is vital (i.e. upper-body activities neglected with hip or lower-back wear)
- Calibration needs to be performed according to study characteristics (specific cut points)
- Data reduction, transformation and processing take time

Validation of the GENEA Accelerometer

DALE W. ESLIGER ${ }^{1,2}$, ANN V. ROWLANDS ${ }^{1}$, TINA L. HURST ${ }^{3}$, MICHAEL CATT ${ }^{3,4}$, PETER MURRAY ${ }^{3}$, and ROGER G. ESTON ${ }^{1}$
${ }^{1}$ School of Sport and Health Sciences, St Luke's Campus, University of Exeter, Exeter, England, UNITED KINGDOM;
${ }^{2}$ College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, CANADA; ${ }^{3}$ Unilever Discover, Colworth, West Sussex, England, UNITED KINGDOM; and Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UNITED KINGDOM

MEDICINE \& SCIENCE IN SPORTS \& EXERCISE ${ }_{\beta}$ Copyright © 2011 by the American College of Sports Medicine

DOI: 10.1249/MSS.0b013e31820513be

TABLE 4. Sensitivity, specificity, area under the ROC curve, and GENEA SVM ${ }_{g s}$ ($g \mathrm{~min}$) cut points that maximized sensitivity and specificity at three wear positions.

Intensity ${ }^{\text {a }}$	Sensitivity	Specificity	Area Under ROC Curve (95\% Cl)	GENEA Cut Points SVM $_{85}$ (g min)
Left wrist				
Sedentary	97	95	0.98 (0.98-0.99)	<217
Light	NA	NA	NA	217-644
Moderate	95	72	0.91 (0.88-0.93)	645-1810
Vigorous	78	98	0.91 (0.86-0.95)	>1810
Right wrist				
Sedentary	99	96	0.98 (0.97-0.99)	<386
Light	NA	NA	NA	386-439
Moderate	100	56	0.84 (0.81-0.87)	440-2098
Vigorous	78	97	0.89 (0.84-0.94)	>2098
Waist				
Sedentary	99	96	0.97 (0.96-0.98)	<77
Light	NA	NA	NA	77-219
Moderate	96	80	0.93 (0.91-0.95)	220-2056
Viporous	73	99	0.92 (0.88-0.96)	>2056

${ }^{3}$ Sedentary ($<1.5 \mathrm{METs}$), light (1.5-3.99 METs), moderate (4.00-6.99 METs), and vigorous (7+ METs).
the light-intensity category.

$$
\mathrm{SVM}_{\mathrm{gs}}=\sum\left|\sqrt{x^{2}+y^{2}+z^{2}}-g\right|
$$

Objective

- To establish GENEA cut-points for discriminating between six relative-intensity activity levels in middleaged recreational marathoners

Material and Methods

- Runners characteristics for inclusion:
- Age: from 30 to 45 years old

- Health: Free from cardiac or renal disease and from consuming drugs.
- Marathon PB:
- Males: within 3 to 4 hours
- Females: within 3h30min to 4h30min
- Body Mass Index: from 16 to $24.99 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
- Ethics Statements:
- All individuals included in the current study were fully informed and gave their written consent to participate.
- The research was conducted according to the Declaration of Helsinki. and it was approved by the Research Ethics Committee of the Jaume I University of Castellon.

Material and Methods

- Each participant completed a standardized questionnaire to collect demographic information, as well as medical information, training plan and competition history.
- Each participant complete a cardiopulmonary exercise test
- The test was done on a treadmill (pulsar ${ }^{\circledR} 3 \mathrm{p} . \mathrm{h} / \mathrm{p} / \mathrm{cosmos}$ sports \& medical gmbh. Nussdorf-Traunstein. Germany) until exhaustion
- Breath-by-breath gas exchange was measured by the Jaeger MasterScreen ${ }^{\circledR}$ CPX gas analyzer
- The test was an adaptation of the incremental ramp exercise protocol (Myers J. Bellin D. 2000; Boone J. Bourgois J. 2012)

Material and Methods

GENEActiv accelerometer (Activinsights Ltd.. Kimbolton. Cambridgeshire. United Kingdom).

- The acelerometer was worn during all time of the cardiopulmonary exercise test
- Non dominant wrist as a watch
- Frequency: 85.70 Hz
- Epoch: average each minute (SVMgs•min ${ }^{-1}$)

Material and Methods

- Cut points of Physical Activity:
- Relative intensity categories of physical activity according to individualized $\dot{\mathrm{VO}}_{2 \text { max }}$ (modification from Strath et al.. 2013):
- Sedentary: $\dot{\mathrm{VO}}_{2}<10 \% \dot{\mathrm{VO}}_{2 \text { max }}$
- Light: $10 \% \leq \dot{\mathrm{VO}}_{2} \leq 25 \% \dot{\mathrm{VO}}_{2 \text { max }}$
- Moderate: $25 \% \leq \dot{\mathrm{VO}}_{2} \leq 45 \% \mathrm{VO}_{2 \text { max }}$
- Vigorous: $45 \% \leq \mathrm{VO}_{2} \leq 65 \% \dot{\mathrm{VO}}_{2 \text { max }}$
- Very Vigorous: $65 \% \leq \dot{\mathrm{VO}}_{2} \leq 85 \% \mathrm{VO}_{2 \text { max }}$
- Extremely Vigorous: $\dot{\mathrm{VO}}_{2} \geq 85 \% \dot{\mathrm{VO}}_{2 \text { max }}$
- Statistics:
- Receiver Operation Curve (Curve ROC)
- Youden Index
- Area Under Curve (AUC). Sensibility \& Specificity

$\Delta \bullet$

Results

	Variable	All participants $(N=98)$	Males $(N=83)$	Females $(N=15)$
Physiological characteristics*	Age	38.72 ± 3.63	38.76 ± 3.65	38.50 ± 3.63
	BMI	22.87 ± 1.71	23.18 ± 1.48	21.32 ± 2.01
	\% Fat	14.74 ± 3.25	13.81 ± 3.67	19.54 ± 4.16
	$\mathrm{VO}_{\mathbf{2 m a x}}\left(\mathbf{m l} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	54.53 ± 5.63	55.74 ± 5.14	48.27 ± 3.60
Training indicators*	Sessions per week	4.81 ± 0.86	4.90 ± 0.85	4.33 ± 0.81
	Kilometers per week	63.16 ± 13.42	64.45 ± 13.21	55.66 ± 12.79
	Hours per week	7.30 ± 2.67	7.46 ± 2.69	6.21 ± 2.27
History as marathoner *	Marathons finished	3.28 ± 3.00	3.56 ± 3.09	1.92 ± 2.08
	Marathon per year	1.09 ± 0.61	1.21 ± 0.61	0.93 ± 0.59
	Marathon PB	3:34:47 \pm 20:50	3:31:03 $\pm 19: 10$	3:54:30 \pm 18:27
Work intensity *	High intensity	7.07\%	8.43\%	0\%
	Medium intensity	31.31\%	31.32\%	31.25\%
	Low intensity	61.61\%	60.24\%	68.75\%
Levels of study *	School graduate	5.10\%	4.87\%	6.25\%
	High school graduate	6.12\%	6.09\%	6.25\%
	Professional certificate	16.32\%	18.29\%	6.25\%
	Undergraduate degree	72.4\%	70.73\%	81.25\%
Abbreviations: N, number of samplesf BMI, body mass indexf SD, standard d * Values are presented as mean \pm SD \# Values are presented as percentage of all individuals, males and females				

Results

Relative-intensity categories of physical activity according to individualized $\mathrm{VO}_{2 \text { max }}$ measured in 98 adult marathon runners

	All samples ($\mathrm{N}=98$)		Males ($\mathrm{N}=\mathbf{8 3}$)		Females ($\mathrm{N}=15$)	
Relative-intensity levels of physical activity \#	$\dot{\mathrm{V}} \mathrm{O}_{2}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	METs *	$\dot{\mathrm{VO}} \mathrm{O}_{2}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	METs *	$\dot{V ® O}_{2}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	METs *
Sedentary $X<10 \%$	$\stackrel{\mathrm{V}}{\mathrm{O}}$ 2 <5.45	METs < 1.56	$\dot{\mathrm{V}} \mathrm{O}_{2}<5.57$	METs <1.59	$\dot{\mathrm{VO}}_{2}<4.82$	METs <1.38
$\begin{gathered} \text { Ligth } \\ 10 \% \leq x<25 \% \end{gathered}$	$5.45 \leq \mathrm{VO}_{2}<13.63$	$\begin{gathered} 1.56 \leq \text { METs }<~ \\ 3.90 \end{gathered}$	$5.57 \leq \mathrm{VO}_{2}<13.94$	1.59 < METs < 3.97	$4.82 \leq \mathrm{V}_{\mathbf{O}}^{2}<12.07$	$1.38 \leq$ METs <3.45
Moderate $25 \% \leq X<45 \%$	$13.63 \leq \dot{\mathrm{VO}}_{2}<24.54$	$3.9 \leq$ METs <7.01	$13.94 \leq \mathrm{VO}_{2}<25.08$	$3.97 \leq$ METs < 7.15	$12.07 \leq \mathrm{VO}_{2}<21.72$	3.45 < METs < 6.21
$\begin{gathered} \text { Vigorous } \\ 45 \% \leq x<65 \% \end{gathered}$	$24.54 \leq \dot{\mathrm{Vo}}_{2}<35.44$	$\begin{gathered} 7.01 \leq \text { METs }< \\ 10.13 \end{gathered}$	$25.08 \leq$ VO $_{2}<36.23$	$\begin{gathered} 7.15 \leq \text { METs < } \\ 10.33 \end{gathered}$	$21.72 \leq$ VO $_{2}<31.38$	6.21 < METs < 8.97
Very Vigorous $65 \% \leq$ X $<85 \%$	$35.44 \leq \dot{\mathrm{VO}}_{2}<46.35$	$\begin{gathered} 10.13 \leq \text { METs < } \\ 13.24 \end{gathered}$	$36.23 \leq$ VO $_{2}<47.38$	$\begin{gathered} 10.33 \leq \text { METs } \\ <13.50 \end{gathered}$	$31.38 \leq$ V' $_{2}<41.03$	$\begin{gathered} 8.97 \leq \text { METs < } \\ 11.72 \end{gathered}$
Extremely Vigorous $x \geq 85 \%$	$\dot{\mathrm{V}} \mathrm{O}_{2} \geq 46.35$	METs ≥ 13.24	$\dot{\mathrm{V}} \mathrm{O}_{2} \geq 47.38$	METs ≥ 13.50	$\dot{\mathrm{V}} \mathrm{O}_{2} \geq 41.03$	METs ≥ 11.72

[^0]
Results

Vigorous

Results

	Intensity level of physical activity	Sensitivity (\%)	Specificity (\%)	Area under the ROC curve ($95 \% \mathrm{CI}$)	
	All samples ($\mathrm{N}=98$)				
	Sedentary	99.2	93.6	0.973 (0.966-0.980)	$\mathrm{SVM}_{\mathrm{gs}}<528.31$
	Light	93.6	99.2	0.973 (0.966-0.980)	$528.31 \leq$ SVM $_{\text {gs }}<1166.28$
	Moderate	97.2	93.5	0.993 0.990-0.996)	$1166.28 \leq$ SVM $_{\text {gs }}<3679.91$
	Vigorous	96.5	93.9	0.988 (0.984-0.993)	$3679.91 \leq$ SVM $_{\text {gs }}<4155.94$
	Very Vigorous	95.1	78.0	0.943 (0.933-0.954)	$4155.94 \leq$ SVM $_{\text {gs }}<5250.68$
Na	Extremely Vigorous	88.9	71.0	0.886 (0.867-0.905)	$\mathrm{SVM}_{\mathrm{gs}} \geq 5250.68$
	Males ($\mathrm{N}=83$)				
	Sedentary	99.1	94.0	0.973 (0.966-0.981)	$\mathrm{SVM}_{\mathrm{gs}}<528.31$
	Light	94.0	99.1	0.973 (0.966-0.981)	$528.31 \leq$ SVM $_{\mathrm{gs}}<1166.28$
	Moderate	97.0	93.2	0.992 0.989-0.996)	$1166.28 \leq$ SVM $_{\text {gs }}<3679.91$
	Vigorous	97.6	93.8	0.99 (0.985-0.995)	$3679.91 \leq$ SVM $_{\mathrm{gs}}<4364.64$
	Very Vigorous	91.7	80.9	$0.94(0.929-0.952)$	$4364.64 \leq$ SVM $_{\text {gs }}<5264.37$
	Extremely Vigorous	89.9	70.3	0.881 0.859-0.903)	$\mathrm{SVM}_{\mathrm{gs}} \geq 5264.37$
0	Females ($\mathrm{N}=15$)				
(0)	Sedentary	100	93.0	0.968 (0.946-0.990)	SVM $_{\text {gs }}<326.08$
	Light	93.0	100	0.968 (0.946-0.990)	$326.08 \leq$ SVM $_{\text {gS }}<1264.59$
le	Moderate	98.3	97.8	0.995 0.989-1.000)	$1264.59 \leq$ SVM $_{\mathrm{gs}}<2717.5$
	Vigorous	97.8	93.8	0.988 (0.977-0.999)	$2717.5 \leq$ SVM $_{\text {gs }}<3355.56$
	Very Vigorous	98.3	86.5	0.97 (0.951-0.989)	$3355.56 \leq$ SVM $_{\text {gs }}<5796.21$
	Extremely Vigorous	86.1	82.5	0.924 0.883-0.965)	SVM $_{\mathrm{gs}} \geq 5796.21$

Performance analysis of wrist-worn GENEA cut-points for each intensity level in adult marathon runners

Abbreviations: N . number of samples; ROC. receiver operation curve; CI. coefficient interval; SVM ${ }_{\mathrm{Es}}{ }^{\text {s }}$ signal magnitude vector gravity-subtracted

* Optimal cut-points maximising Youden Index

Conclusions

- The wrist-worn GENEA accelerometer presents a high capacity of classifying the intensity of physical activity in middle-aged recreational marathoners when examining all samples together, as well as when sample set was separated by sex
- This study suggests that the triaxial GENEA accelerometers (worn on the non-dominant wrist) can be used to predict energy expenditure for running activities

Financial support

cultura ${ }^{\text {ed }}$ fundación Esfuerzo

[^0]: Abbreviations: N , number of individuals; $\dot{\mathrm{V}} \mathbf{2 m a x}$ maximum oxygen consumption; MET, metabolic equivalent task
 Each minute of the cardiopulmonary test was classified into one of the six intensity categories of physical activity relative to an individual's level of cardiorespiratory ($\left.\dot{V} \mathrm{O}_{2 \text { max }}\right)$.

 * 1 MET $=3.5 \mathrm{~m} / \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$
 \# X denotes the percentage of a person's aerobic capacity $\left(\mathrm{VO}_{2 \max }\right)$ used to classify each one of the six relative-intensity categories

